84 research outputs found

    A kind of coordinated evolution measurement model for traffic network based on complexity degree

    Get PDF
    Coordinated evolution is a process with complexity, temporality, spatiality, and continuity. The existed methods cannot relevantly satisfy and measure the degree of coordinated evolution in real conditions. Aiming at solving the coordinated evolution problems for the urban traffic network, the information complexity must be evaluated, this paper uses the multi-dimensional connection number for compressing the factors of traffic network. Firstly, the basic characteristics of traffic network are analysed on the definition of traffic information complexity. The traffic network measurement model is established based on the information entropy, and the coordinated evolution process of the multi-layer urban traffic network is analysed for defining the ordered parameters of the traffic network. Then the coordinated measurement model for the multi-layer traffic network is constructed by the ordered parameters. In addition, we set up a coordinated evolution model according to the proposed estimation criteria of the ordered parameters and the theory of the multi-dimensional connection numbers. The case analysis shows that the order degree of Hangzhou traffic network is 0.7929, which approaches to 1 as while the comprehensive coordinated index of Hangzhou multi-layer traffic network is 0.3323, which clearly and intuitively gives a measurement value for the multi-layer urban traffic network. The result is also effectively verified the validity of the proposed models

    Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.

    Get PDF
    G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∌20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License

    A KIND OF COORDINATED EVOLUTION MEASUREMENT MODEL FOR TRAFFIC NETWORK BASED ON COMPLEXITY DEGREE

    No full text

    An improved CS-LSSVM algorithm-based fault pattern recognition of ship power equipments.

    No full text
    A ship power equipments' fault monitoring signal usually provides few samples and the data's feature is non-linear in practical situation. This paper adopts the method of the least squares support vector machine (LSSVM) to deal with the problem of fault pattern identification in the case of small sample data. Meanwhile, in order to avoid involving a local extremum and poor convergence precision which are induced by optimizing the kernel function parameter and penalty factor of LSSVM, an improved Cuckoo Search (CS) algorithm is proposed for the purpose of parameter optimization. Based on the dynamic adaptive strategy, the newly proposed algorithm improves the recognition probability and the searching step length, which can effectively solve the problems of slow searching speed and low calculation accuracy of the CS algorithm. A benchmark example demonstrates that the CS-LSSVM algorithm can accurately and effectively identify the fault pattern types of ship power equipments

    Liposomal Delivery of MIW815 (ADU-S100) for Potentiated STING Activation

    No full text
    Stimulator of interferon genes (STING) agonists can improve the anticancer efficacy of immune checkpoint blockade by amplifying tumor immunogenicity. However, the clinical translation of cyclic dinucleotides (CDNs) as STING agonists is hindered by their poor drug-like properties. In this study, we investigated the design criteria for DOTAP/cholesterol liposomes for the systemic delivery of ADU-S100 and delineated the impact of key formulation factors on the loading efficiency, serum stability, and STING agonistic activity of ADU-S100. Our findings demonstrate that the cationic liposomal formulation of ADU-S100 can be optimized to greatly potentiate STING activation in antigen-presenting cells

    A rough set-based measurement model study on high-speed railway safety operation.

    No full text
    Aiming to solve the safety problems of high-speed railway operation and management, one new method is urgently needed to construct on the basis of the rough set theory and the uncertainty measurement theory. The method should carefully consider every factor of high-speed railway operation that realizes the measurement indexes of its safety operation. After analyzing the factors that influence high-speed railway safety operation in detail, a rough measurement model is finally constructed to describe the operation process. Based on the above considerations, this paper redistricts the safety influence factors of high-speed railway operation as 16 measurement indexes which include staff index, vehicle index, equipment index and environment. And the paper also provides another reasonable and effective theoretical method to solve the safety problems of multiple attribute measurement in high-speed railway operation. As while as analyzing the operation data of 10 pivotal railway lines in China, this paper respectively uses the rough set-based measurement model and value function model (one model for calculating the safety value) for calculating the operation safety value. The calculation result shows that the curve of safety value with the proposed method has smaller error and greater stability than the value function method's, which verifies the feasibility and effectiveness

    The definition of different fault patterns.

    No full text
    <p>The definition of different fault patterns.</p
    • 

    corecore